Published papers

  1. Spectral Emission Dependence of Tin-Vacancy Centers in Diamond from Thermal Processing and Chemical Functionalization – E. Corte et al., Adv. Photonics Research 3, 2100148 (2021) https://onlinelibrary.wiley.com/doi/full/10.1002/adpr.202100148
  2. Spectral features of Pb-related color centers in diamond – a systematic photoluminescence characterization – S. Tchernij et al., New J. Phys. 23, 063032 (2021) https://doi.org/10.1088/1367-2630/ac038a
  3. Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots, L. Bremer et al., Opt. Express 30, 15913 (2022) https://doi.org/10.48550/arXiv.2202.09562
  4. Single photon sources for quantum radiometry: a brief review – S. Kueck et al., Applied Physics B 128, 28 (2022) https://doi.org/10.1007/s00340-021-07734-2
  5. Optical and Spin Properties of NV Center Ensembles in Diamond Nano-Pillars – K. Volkova, Nanomaterials 12, 1516 (2022) https://doi.org/10.3390/nano12091516
  6. Interplay between multipole expansion of exchange interaction and Coulomb correlation of exciton in colloidal II–VI quantum dots, P. Klenovský, et al. Electronic Structure 4, 015006 (2022) https://iopscience.iop.org/article/10.1088/2516-1075/ac5b7e
  7. Emergence of Constructor-Based Irreversibility in Quantum Systems: Theory and Experiment, C. Marletto, et al., Physical Review Letters 128, 080401 (2022) 10.1103/PhysRevLett.128.080401
  8. Dimension-Dependent Phenomenological Model of Excitonic Electric Dipole in InGaAs Quantum Dots, P. Steindl et al., Nanomaterials 12, 719 (2022) https://doi.org/10.3390/nano12040719
  9. Modeling electronic and optical properties of III–V quantum dots—selected recent developments, A. Mittelstädt et al., Light: Science & Applications 11, 17 (2022) https://www.nature.com/articles/s41377-021-00700-9
  10. Enhanced Purcell factor for nanoantennas supporting interfering resonances, R. Colom et al., Physical Review Research 4, 023189 (2022), http://dx.doi.org/10.1103/PhysRevResearch.4.023189
  11. Near-unity efficiency in ridge waveguide-based, on-chip single-photon sources, Y. Wang, Materials for Quantum Technology, 2 045004 (2022)
    https://iopscience.iop.org/article/10.1088/2633-4356/aca8e8
  12. Thin-film InGaAs metamorphic buffer for telecom C-band InAs quantum dots and optical resonators on GaAs platform, R. Sittig, Nanophotonics 11, 6 (2022)
    https://doi.org/10.1515/nanoph-2021-0552
  13. Fiber-coupled quantum light sources based on solid-state quantum emitters, L. Bremer, Materials for Quantum Technology 2, 042002 (2022)
    https://iopscience.iop.org/article/10.1088/2633-4356/aca3f3
  14. Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters, J. Guimbao, Nanomaterials 12, 16 (2022)
    https://www.mdpi.com/2079-4991/12/16/2800
  15. Coherence of a charge stabilised tin-vacancy spin in diamond, J. Görlitz, npj Quantum Information 8, Article number: 45 (2022) 
    https://www.nature.com/articles/s41534-022-00552-0
  16. Detection rate dependence of the inherent detection efficiency in single-photon detectors based on avalanche diodes, S. M. F. Raupach, Physical Review A 105, 042615 (2022) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.042615
  17. Excitonic fine structure of epitaxial Cd(Se,Te) on ZnTe type-II quantum dots, P. Klenovský, Phys. Rev. B 105, 195403 (2022) https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.195403
  18. Efficient room-temperature molecular single-photon sources for quantum key distribution, G. Murtaza et al., Opt. Express 31, 9437-9447 (2023) https://doi.org/10.1364/OE.476440
  19. Bright single-photon emission from a GeV center in diamond under a microfabricated solid immersion lens at room temperature, J. Christinck, Journal of Applied Physics 133, 193102 (2023) https://doi.org/10.1063/5.0150208
  20. Real-time two-photon interference from distinct molecules on the same chip, R. Duquennoy et al., Optica 9, 731-737 (2022) https://doi.org/10.1364/OPTICA.452317
  21. GaAs quantum dots under quasiuniaxial stress: Experiment and theory, Xueyong Yuan et al., Phys. Rev. B 107, 235412 (2023)
    https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.235412
  22. Efficiency Optimization of Ge-V Quantum Emitters in Single-Crystal Diamond upon Ion Implantation and HPHT Annealing, Elena Nieto Hernández et al., Advanced Quantum Technologies 6, 2300010 (2023) https://doi.org/10.1002/qute.202300010
  23. (drafted)
  24. Energy-time entanglement from a resonantly driven quantum-dot three-level system, Marcel Hohn et al., Phys. Rev. Research 5, L022060 (2023),
    https://doi.org/10.1103/PhysRevResearch.5.L022060
  25. Applying a Riesz-projection-based contour integral eigenvalue solver to compute resonance modes of a VCSEL, Lilli Kuen et al., Proc. SPIE 12575, 125750J (2023) http://arxiv.org/abs/2306.02926
  26. High-performance designs for fiber-pigtailed quantum-light sources based on quantum dots in electrically-controlled circular Bragg gratings, Lucas Rickert et al., Opt. Express 31, 14750 (2023) https://doi.org/10.48550/arXiv.2212.04883
  27. Bright Source of Purcell-Enhanced, Triggered, SinglePhotons in the Telecom C-Band, Cornelius Nawrath et al, Advanced Quantum Technologies, 2300111 (2023) https://onlinelibrary.wiley.com/doi/10.1002/qute.202300111
  28. Inverse Design of a Hybrid Mie-Tamm Photonic Structure as a Highly Directional Gigahertz Single-Photon Source, J.M. Llorens and B. Alén, Phys. Rev. Applied, 19, 034054 https://doi.org/10.1103/PhysRevApplied.19.034054
  29. Magnesium-Vacancy Optical Centers in Diamond, E. Corte et al., ACS Photonics 2023, 10, 1, 101–110, https://doi.org/10.1021/acsphotonics.2c01130
  30. On the importance of antimony for temporal evolution of emission from self-assembled (InGa) (AsSb)/GaAs quantum dots on GaP(001), Petr Steindl et al., New Journal of Physics 23 103029
    https://dx.doi.org/10.1088/1367-2630/ac2bd6
  31. Anomalous luminescence temperature dependence of (In,Ga)(As,Sb)/GaAs/GaP quantum dots overgrown by a thin GaSb capping layer, E. M. Sala and P. Klenovský, New J. Phys. 25 113012.
    https://doi.org/10.1088/1367-2630/ad0856
  32. Chiral and directional optical emission from a dipole source coupled to a helical plasmonic antenna, L. Kuen et al., Appl. Phys. Lett. 124, 231102 (2024)
    https://doi.org/10.1063/5.0201748
  33. Fabrication uncertainty guided design optimization of a photonic crystal cavity by using Gaussian processes, M. Plock et al., Journal of the Optical Society of America 41, Issue 4, pp. 850-862 (2024)
    https://doi.org/10.1364/JOSAB.505767
  34. Sawfish’ Photonic Crystal Cavity for Near-Unity Emitter-to-Fiber Interfacing in Quantum Network Applications, Advanced Optocal Materials 12, Issue 13 (2024), https://doi.org/10.1002/adom.202301286
  35. Epitaxial growth and characterization of multi-layer site-controlled InGaAs quantum dots based on the buried stressor method, I. Limame, Appl. Phys. Lett. 124, 061102 (2024), https://doi.org/10.1063/5.0187074
  36. Assessing the Alignment Accuracy of State-of-the-Art Deterministic Fabrication Methods for Single Quantum Dot Devices, Abdulmalik A. Madigawa, CS Photonics 11, 3, 1012–1023 (2024)
    https://doi.org/10.1021/acsphotonics.3c01368
  37. Self-Aligned Photonic Defect Microcavity Lasers with Site-Controlled Quantum Dots, Ching-Wen Shih, Laser & Photonics Reviews, 2301242 (2024)
    https://doi.org/10.1002/lpor.202301242